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Roles of convection, pressure, and dissipation in three-dimensional turbulence
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We investigated the roles of the convection, pressure, and dissipation terms in the equation for the longitu-
dinal velocity increment, with the help of the DNS data on 102%he pressure screens the convection growing
as the intensity of fluctuation increases. The dissipation term is found to make no direct contribution to the
fourth order structure function; the structure functions of order not less than 5 are affected by the dissipative
structure as far as the scaling is concerned. A reason is also given for the observation by Sto&idtzky
[Phys. Rev. 48, R3217(1993] that the scaling of the (B)th order structure function is more similar to that
of the (2m—1)th order structure function than that ofrt2- 1)th order structure function.
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[. INTRODUCTION longitudinal velocity increment, with the assistance of the
DNS on 1024 meshes.

The scaling of the longitudinal structure function is one of  We will employ two methods. The first is to compute the
the main subjects in turbulen¢&—3]. It is now well estab- conditional averages of the three fundamental terms, i.e.,
lished[4—8] that the scaling deviates from the original Kol- convection, pressure, and dissipation terms, with a value of
mogorov scaling, i.e., K419]. What is responsible for the the longitudinal velocity differencer; being fixed. Since the
deviation? The spatially nonuniform energy dissipation rateconditional averages are a function of;, the averaged
[10,11] has been thought of as a main candidate for it sinceuantities reveal the amplitude-dependent effects of those
Landau’s comment. Recently Yakhdt2] proposed the mean terms. The second is to investigate the equation for a struc-
field approximation, which was based on the neglect of théure function of arbitrary order, which consists only of the
pressure term and the dissipation term, and the addition afonvection, pressure, and dissipation terms in the inertial re-
these terms in a perturbative way. Kurien and Sreenivasagion. We check how three terms satisfy the equation in a
[13] investigated the validity of his various equations usingbalanced way.
the data in the atmospheric boundary turbulence. In this con- The findings in this work are as follows. We start with the
text it is interesting to know whether and how the dissipativeequation for the velocity increment in physical space, from
structure and the pressure gradient affect the scaling in tuwhich the equation for the structure function is derived; it
bulence. Such a study is also useful for modeling turbulenceontains only the convection, pressure, and dissipation terms
in LES. in the inertial region. In order to know the roles of the con-

Currently the anomalous scaling has been addressed feection and the pressure we compute the conditional aver-
the passive scalar field advected by the delta-correlated veges of the convection and pressure terms with a fixed value
locity field [14—21]. In this issue the advection and dissipa- w; of the longitudinal velocity difference from the DNS
tion terms are combined into a single operator of secondlata. The sign of the conditional average of the pressure term
derivative, and a homogeneous solution of the operator igs found to be opposite to that of the convection term, so that
associated with the anomalous scaling of the scalar structutee pressure screens the convection partly. The relative mag-
function[17,21]. The three-dimensional turbulence is, how- nitude of both averages is estimated; the convection term is
ever, much more complicated for the following reasdis. predominant over the pressure onevgt<0, while the latter
Since the convection term is nonlinear, the dissipation ternis larger than the former at;>0.
cannot be combined with the convection tekin. There is a The relation between the inertial terfthe convection
nonlocal pressure term, which is the superposition of theéerm plus the pressure tefrand the dissipation term is ex-
divergence of the convection term from afar. The presenamined based on the equation for the structure function. The
paper aims to theoretically investigate roles of the convecdissipative term is negligible as compared with the inertial
tion, pressure, and dissipation terms in the equation for théerm in the inertial region of the fourth order structure func-

tion, while it becomes comparable and balances with the
inertial term for the structure functions of order equal to or

*Electronic address: nakano@phys.chuo-u.ac.jp higher than 5. The pressure is found to screen the convection
"Electronic address: gotoh@system.nitech.ac.jp increasingly as the order of the structure function grows.
*Electronic address: fukayama_daigen@clubaa.com Next we turn to the correlatioh, of the longitudinal dis-
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sipation field with thenth power of the longitudinal velocity Sp(Xq,X) =Pp(Xy) — P(Xq),
difference. Fom=2, |, scales with the exponent less than (2.3
the K41 valuen/3 in the inertial region, whild, decreases S (X1, %) =Ti(X5) — fi(Xy).

with r, unlike the K41 expectation'’®>. We also show that

the scaling exponent df,,_; is closer to that of,,_, than  Throughout the present paper we will employ the convention

that ofl,,,. This finding is consistent with the observation by that the summation is taken over repeated indicejsawid k

Stolovitzky et al. [22] that the scaling o(w'fm> is closer to  Wwithout otherwise stated, while it is not taken ovetntro-

that of (w2™~1) than that of w2™*1). The correlation], of ~ ducingX andr as

the longitudinal dissipation rate with th&h power of the

absolute value of the longitudinal velocity increment is also

investigated;J, behaves orderly witm in contrast tol,,

indicating the scaling exponent of the structure function as—Eq' (2.2) reduces to

sociated with the absolute value of the longitudinal velocity P g P

increment increases Wlth_orderly in the inertial region in Ewﬁrvijﬁrwjﬁwi: - W(SFH_ ofi+ VV)Z(Wi ,

accordance with our previous res{#. ] ] ! 2.5
The present paper is organized in the following way. In '

Sec. Il we prepare the fundamental e_quation for the velocityyhereV is the average velocity defined as

increment in physical space, from which the equation for the

structure function is derived. Section Il is devoted to the V=[u(x;)+u(x,)]/2. (2.6)

analysis of the conditional average of the convective and

pressure terms with a fixed valug of the longitudinal ve- In deriving the right hand side of E@2.5 we made use of

locity difference. First, those averages are computed from ththe identity

DNS data, and then their features are theoretically inter-

preted. The relative order of magnitude of the both condi- (VE+ VDW= (Vo Vi) 2w = Viw, 2.7

tional averages is estimated in Sec. IV. In Sec. V we inves-

tigate the relation between the inertial term and thebecause

dissipation term based on the equation for the structure func-

tion. Section VI is devoted to the evaluation of the correla-

tion of the longitudinal dissipation field with an arbitrary

power of the longitudinal velocity difference. We also con-

X:(X1+X2)/2, r=X2—X1, (24)

Vl' V2Wi = 0

The incompressible condition now takes the forms

sider the correlation of the dissipation rate with an arbitrary 9 9 9 p
order of the absolute value of the longitudinal velocity incre- a_Wj =ij =a—vj =Wv,- =0, (2.8
ments. In Sec. VIl we discuss the results obtained in the g i i ]
present paper in comparison with the mean-field-because
approximated resultgl2,13. Section VI is devoted to the
discussion as to the anomalous scaling of longitudinal veloc- P P
ity increments. —w;=—[u;(X+ —Uui(X— =
y aer' % [Uj(X+r/2)—u;(X=r/2)]=0
Il. EQUATION FOR VELOCITY DIFFERENCE and so on(Note that the partial derivative of; with respect

to x; should be carried out witk, fixed and vice versa.
Similarly the partial derivative ofv; with respect toX should
be carried out withr fixed and vice versa.
The pressure difference can be computed by taking the
divergence of Eq(2.5 with respect toX, i.e., by operating
f aldX; on EQ.(2.5. Then

Let us introduce the velocity increment at two poirts
andx, as

Wi (X1,X2) = Uj(Xp) = Ui(Xy). (2.1

The equation fow; is obtained by taking the difference o

the Navier-Stokes equations of unit mass density at two J J J
ointsx; andXy: 250=— —|\/, — W, W
p 1 2 V5 op o [Vk anWJ +Wkﬂrkwl}
7 Wi+ | Uy K0+ Uy ()~ | Wiy )
—W;(Xq,X Ui (Xp)—— + Ui (Xq)— | W;(Xq ,X d dJ
0"12'1’2 ngx_ ]lﬁx_ I\AL A2 __ 2 .
2j 1j 25Xj WkarkWJ y (2.9)
J J
== WZI—FE 5p(X1,X2)+5fi(X1,X2) because
+ (V24 V2)Wi(X1,Xp), (2.2) vV ow;
o”Xk B ﬁrk )
wheredp and 6f; are the differences of pressure and external
forces at two points Hence the pressure gradient appearing in (2dp) becomes
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9 Here the last term on the left-hand side of Eg.14) is the
% PX,r)= —f dX"Kij (X=X")w (X",r) contribution from external forces, while the right-hand side
! of Eq. (2.14) is contributed by the molecular dissipation. If

d ) we focus on the universal region independent of how turbu-
XaTij(X ), (2.10 lence is excited externally, we can ignore the external forcing
term
where
nfw' Y w iw + i&
1 RR i Far, 71 aX P
Kii(R)= Sii— (2.11
B 27R3| ! T R? =—n(n—1)p(w"). (2.15
The equation fow]' is easily derived by multiplying Eq. If we use Eq.(2.13 instead, we have another expression
(2.5 by nw!'*: for (wl") in place of Eq.(2.15:
Jd J J d J J
W — — n—1sf. n-1 _ -
L PV 7] —w+nw'" (WJ arjw'+ X 5p) nw *8f; n<wi (wJ ar, w;+ e 5p)>
= vVwi—n(n—1) vwi' | Vew; |2, (2.12 =2vV2(wh) —2n(n—1)(wP %e(X,%;)), (2.16

This type of equation was already introduced elsewhergyhere
[12,13,23,24 The second term on the right-hand side of Eq.
(2.12 represents the viscous dissipationvgft stuff, while v
the first term does the spatial transport of the same stuff due &i(X1,X) = §(|Vui(><z)|2+ Vui(xp)]?). (217
to molecular viscosity, which conserves in the entire sys-
tem. It should be emphasized, therefore, that the first term ogote thate;(x, ,x,) is related to the average energy dissipa-
the right-hand side of Eq2.12 has nothing to do with the tion rates through
dissipation ofw]'.
The right-hand side of2.12 may be written in a different .
form: s=2 (&i(X1,X%2)). (2.18
|

wl'—n(n—1)pw! [ | Vow;| 2+ | Vw;| 2] The right-hand side of Eq2.16) consists of two terms. The
first term represents the rate of molecular diffusion\of')

in r space, while the second term stands for the contribution
due to the correlation between the energy dissipation rate and

1
y(zvi+ 2v?

1
=v EV§(+2V$ "—n(n—1)pw! 2

N=2 The molecular diffusion term is smaller by a factor of
X [| Voui(X2) |2+ | Vaui (%) 2], (213 (ry/r)*3 (rq4 is the dissipation scalehan the inertial term
within K41, so that we are led to
where the content in the angular brackets is the sum of the
energy dissipation rate at two poin¢sandx,. However, the no1 d d
expression(2.12 is more meaningful in dealing with the Wi (Wjﬁwﬁ' ﬁ&))
velocity increment itself, because E(p.12) indicates that ! '
the spatial gradient ofy; leads to the dissipation off'. = —2(n—1)<WiniZ£i(leX2)> (2.19
The equation for thenth order structure function is ob-
tained by taking the ensemble average of E412. Since in the inertial region. Ifn is equated to 2 in Eq2.19), it
the system is stationary in time and homogeneous in spacgeduces to the Kolmogorov’s 4/5 law. Hence E2.19 may
the first term on the left-hand side of E(R.12 does not be called the generalized Kaan-Howarth-Kolmogorov re-
contribute. The second term also vanishes because lation.
In the following we focus only on the statistical behavior

Vi) = (VW) =0 of the longitudinal increment. When is chosen in thex
Lox; ™t ax;r ' direction, Eq.(2.15 with i =1 becomes
Then Eq.(2.12 reduces to B d e, 3
wi ! Wi Wi+~ dp | ) = —(n=1)uw] 2| Vew,|2),
i
_ J J _ (2.20
1 1 .
n<win (Wjﬁ_l’jwi+&_)(i5p)>_n<win 5f;)

o 5 which is valid in the universal region including the dissipa-
=—n(n—1)w(w" | Vxw;|%). (2.14  tive one. On the other hand, in the inertial region we have
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W”_l<w-iw +i6 )
1 ]arj 1 07X1 P
= —2(n=1)(W] %e1(Xy, X)) (2.2

Hereafter the terrwj(a/ﬁrj)wl+ (9l9X1) dp is called the in-

ertial term for convenience, which consists of the convection
term plus the pressure term. We will address the following
issues:(i) what a role the pressure gradient plays compared
with the convection term an@i) whether the correlation of
the longitudinal dissipative rate; (x4 ,X,) with erw—z affects

the (n+1)th order structure function.

Aw)

Ill. CONDITIONAL AVERAGE OF CONVECTION AND
PRESSURE TERMS

In this section we focus on the roles of the convection
term and the pressure gradient term on the left-hand side of
Eqg. (2.20. In particular we consider a problem on how the
pressure term affects the convection term, to modify the in-
ertial term. It is intuitively believed that the incompressible
condition forces the pressure to screen the convection.

Instead of directly treating the left-hand side of E2,20),
it is useful to rewrite it as

A(wy)

fdwl[A<w1>—B<w1>]w2‘1P<w1>, (3.9 c J—

whereA(w;) andB(w,) are the conditional averages of the ~ FIG. 1. Plot ofA(w;) againstw;/y(wj) (a) in the range be-
convection term and the pressure gradient term with théveenr=197 and 304 and(b) in a range smaller than=197.
value of the longitudinal velocity increment fixed \&j;
rabola is asymmetric, i.e., it is larger on the negative side of
w;, than on the positive side @¥,. This tendency is the most
significant at the smallest separation 4.87. (iii) The mini-
mum of A(w,) is negative, located around the originwf.
and Let us reason the above featuresAqfv,). To this end,
we introduce an illuminating model fow; in Eq. (2.1). At
B(wy)= —<ib‘plwl>. (3.3 first we are tempted_ to Taylor expand E_€a.l) in powers of
Xy r. However, the derivative of the velocity field is the stron-
) - ) ) gest on a dissipative scale, so that one cannot directly apply
In Eq.(3.1) P(w,) is a probability density functiofPDF) of e Taylor expansion to Eq2.1). Sincew; represents the
the longitudinal velocity increment. In what follows we dis- intensity of the velocity field of a scale it makes no differ-
cussA(w,;) andB(w;) separately. ence even if Eq(2.1) is replaced by

J
A(W1)2<WjWW1|W1> 3.2
i

A. A(wy) Wi(Xq,X) = Uj(Xg) = Uj(Xy), (3.9

Figure 1 is a plot ofA(w,) againstw; divided by\/<wzl). ~
A(w,) was computed using the data of DNS, which waswhereu;(x,) is the coarse-grained velocity field transmitted
carried out on 1024meshes, withR,=380. The sampling through a filter with widthr; U;(x,) is smooth on scales
was done at 138 different times over 6.6 eddy turnovesmaller tharr. Now we can Taylor expand E¢3.4):
times; the inertial region is located between<80 »=200.
The detail of the simulation is given in Ref8,25]. In order g 1
to show the scale dependence of the behaviorAQiv,) Wi(X,r):rJ—ﬁi(X,r)zsijr.——gijkrjgk, (3.5
clearly, we give the curves for ¥r/7=<304 in Fig. 1a), IX; 2
and those for 48r/7=<19 in Fig. 1b) separately. From
these figures we have the following summaiy.A(w,) re-  whereS;; and() are slowly varying strain rate and vorticity
sembles a parabola, and the curvature decreases with théa scaler; they may be a function ok andr, but we will
increase of the scale as long as the scale is larger than 19ignore their dependence for simplicity.
Forr less than 19, i.e., in the dissipative region, the curva-  Sincer is assumed to be along a directiorr 1,is equated
ture decreases on the contrary radecreases(ii) The pa- tor, whiler, andr; go to zero. However the limiting pro-
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cedure must be takeonly after the differentiationLet us
write downw; explicitly using Eq.(3.5):

1
Wl:Sllr1+<SlB_Eslﬁk9k>rﬁ: (3.6

1
ry+ Saﬁ_isaﬁkﬂk rg, (3.7

1
Wo= ( Sal_ Esalkﬂk

where we employed the convention that Roman letters run

over from 1 to 3, while Greek letters over 2 and 3 only.
Then the longitudinal convection term takes the form

J Jd J
W) — W1 =W; — W+ W, —W
Por; 71 oy T Tegr

=

1
S3,+S8,— Zﬂi}r, (3.9

PHYSICAL REVIEW&, 026316 (2003
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\". K(wl) [ /,,'
A Aw)/4 e
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10 + ".\‘
5
0

w/N<wi>
FIG. 2. Comparison oAy(w,)/4 with A(w,) atr=1077.

ment of the vorticity does not operate, so that such a depres-
sion does not occur. In consequence, the asymmetric prop-
erty of A(w,) is expected from Eq3.9).

where the last expression was obtained after taking the limit It is important to check whether the result obtained above

thatr, goes tor, while r, andr; go to zero. Sincé\(w,) is
the conditional average of Eq3.8) with a fixed value of
w, =Sy, we have

1
A<w1>=r<s§1+ S Znilsn> : (3.9

First we tentatively assume th&;, and (), are statisti-
cally independent 0%,,. Then

2 2 1 2
A(wq)=Sir+{ Si,— ZQ“ r. (3.10
The second term in E43.10) is equal to—(S?,) because

J J J
Wja—er]_ = Wj0_>(jvl = 6'_>(J<WJ Vl>=O,
so that
2 2 1 2
r{ Sti+si,—70%) =0. (3.11
Finally we are led to

1
Ay =r[Sh—(S)I=Hwi-(wd)]. (312

The expressiori3.12) is symmetric with respect ta;, and
agrees roughly with the observed form Afw,) in Fig. 1
except for the asymmetricity iA(w,).

Next let us consider the asymmetric natureAgiv,). To
this end we focus on the large amplitudevof=S;r. In the

region whereS,; is positive, the vorticity is amplified. Since
the direction of the vorticity is, however, along the interme-

diate strain-rate eigenvectf#6], ), is large in(3.9). Hence
the variableS2,— Q2 is much depressed fro®, whenw;

agrees quantitatively with the observed valueAgfv,) by
substituting the computed coarsed grained variables
Si1, Si,, @andQ,, into Eq. (3.9). This problem will be in-
vestigated in the future. Here we are content with comparing
the isotropic form(3.12, which is referred to ag\y(w,),

with the observed isotropic value

~ 1
Alwy) = S[AW) +A(=wy)]. (3.13

There is a quantitative difference betwedqp(w,) and

A(w,): Ao(w,) is overestimated. In Fig. 2 we compare
Ao(w,)/4, which is by a factor four smaller thaky(w;), to

A(w,) at r=1077. The comparison suggests that the ap-
proximation used in deriving Eq(3.12 is quantitatively
wrong, i.e., there is strong statistical correlation betw8gn
andS;, and Q. Figure 2 indicates, furthermore, that the

discrepancy betweeAy(w,) andﬂ(wl) increases with the
intensity ofw,. There are three conceivable reasons fdit.
The statistical correlation betwee$y; and S;, and(}, in-
creases with the magnitude wf,. (ii) There is a saturational
effect for largew, at such an inertial separation, because the
events with large amplitude are suppressed due to the finite
Reynolds numberiii) The number of samples is not suffi-
cient.

The same tendency is observed for other separations:
We need a multiplication factor ranging from 1/3 to 1/4 to

compareA,(0) with A(0). (i) For large amplitude ofv, the
discrepancy betweel,(w;) andA(w,) increases withw,].

Let us consider the rate of energy transfer due to the con-
vection term in scale space. The rate becomes

d

Wle ﬁ_l'jW]':Sll r2| (314)

1
St S 702

where Eqs(3.6) and(3.8) have been used, although the sta-

is positive. In the region wher$,; is negative, the enhance- tistical correlation betwee8,,, S;,, andQ, must be taken
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B. B(wy)

The computed value d8(w;) from the DNS is given in
Fig. 3: the curves for 18r/»<304 in Fig. 3a), and those
for 4.8<r/%<19 in Fig. 3b). Most essential features of
B(w,) are (i) B(w;) has the same sign as(w,), (ii) the
scale dependence 8f(w,) is very similar to that ofA(w,),
and (i ) it is comparatively symmetric undev,« —w; in
contrast toA(w,). We will address these issues below.

Substituting Eq(2.10 into Eq. (3.3 yields

B(w)

B(wl)zfdRKlj(R)<Ej(x+R)|w1;x>, (3.17)

where
J
§ and
Ky (R)= ——| 8, — 32 (3.19
Y 27R3| T T R? '
4 6 4 -2 0 2 4 6 8 In EqQ. (3.17 we have inserted the position vectérto sig-
wN<wi> nify that the average dE;(X+R) is computed with a fixed

value ofw, at X.

FIG. 3. Plot ofB(w,) againstw, /y(wj) (@ in the range be- Let us rewrite Eq(3.17) in the decomposed form

tweenr =197 and 304; and(b) in a range smaller than=197.

into consideration for more detailed quantitative evaluation. B(Wl):f dRK 11(R){E1 (X +R)|wj ;X)
There are a few conclusions drawn from Eg14). (i) If one
assumes th&&, , and() , are statistically independent 8f,,
we have the usual form for an average transfer rate because +J dRK 1 (R){(E (X+R)|wy;X). (3.20

(S19=0:

<w3> The second term is the contribution from the transverse com-
A (3.15 ponentE, , where the kernek, , is proportional taR;R,, . If
turbulence has a peculiar structure such tH&, (X

) . +R)|w,;X) is an odd function oR,, the nondiagonal com-
Since energy cascades toward smaller scéle$) is nega- ponent may contribute to Eq.(3.20. (If (E. (X

tive. (i) Equation(3.14) suggests that the energy cascades in,. R)|w;;X) is an even function oR;, it vanishes. It is
an inverse direction in thg region where the vorticity IS aasonable, however, to assume that the main contribution
strong in such a way tha;>4S;; in consistent with the  comes from the first term on the right-hand side of Eg.

result by Horiuti[27]. _ (3.20, whose kerneK ;4(R) is an even function oR. Under
Finally we consider the amplitude-dependent energy cashjs approximation

cade rate. WheA(w,) is given by Eq(3.12), the amplitude-
dependent energy transfer raterispace is evaluated as

r

Jd
<W1Wj (9—er1> =(Sipr?=

B(w,)= f dRKy;(RI(Ey(X+R)|w1;X), (3.2

1
Wi A(W;) = ?Wl[wf—<wf>]. (3.1
where
Let us limit ourselves tgw,|>(w?). In this case the trans- R2
fer rate is negative fow; <0, which means the energy cas- Ky(R)= ! 1_3_1]_ (3.22
cade toward smaller scale. The situation figr>0 is oppo- 27R3 R2
site. This tendency is completely consistent with the Burgers’
picture. For small amplitude such &s,|< \/(wf), on the In order to relateB(w,) to A(w,) in a certain way we
other hand, the direction of the energy cascade is opposite insert the state ofv; at X+R in the computation of the
the casgw,|> \(w?). conditional average in the integrand of E§.21):

026316-6



ROLES OF CONVECTION, PRESSURE, AND. ..
(E1x(X+R)[wy;X)

= f dwi(E1(X+R)|wj;X+R)C(wy; X+ R|wy;X)

=f dwiA(wy)C(wy; X+ R|wy;X), (3.23

where C(wy; X+ R|wy;X) is a probability thatw,(X+R)
takes on a valuev; provided that a value ofi,(X) is speci-
fied atw,. HenceC must satisfy a normalization condition

J' dw;C(wy; X+R|wy; X)=1. (3.29

Note that the limiting form ofC(w} ; X+ R|wy;X) is such as

| S(wy—wy)
P(wy)

as R—0

C(wy; X+R|wy;X)

as R—x,

(3.29

whereP(w;) is the PDF ofw; .
Plugging Eq.(3.23 into Eq.(3.21), we have

Bwy) = [ dwAWTwiwy, (320

where

T(w;|wy)= f dRK15(R)C(wi;X+R|wy;X).
(3.27

If C(wy;X+R|wy;X) is isotropic with respect tdR, the
right-hand side of Eq(3.27) vanishes due to the integration
over the angle ofR. Hence the both limiting values of
C(wy;X+R|wy;X) in Eg. (3.25 do not make any contribu-
tion to the right hand-side of E¢3.27), so that the dominant
contributing region ofR is of the intermediate scale range,
typically of order ofr, as shown in Appendix A. Furthermore
C(wj;X+R|wy;X) must be anisotropic there.

Based on EQs(3.26) and (3.27), we propose a model
which interprets the most essential propertyBgfv,) that it
has the same sign #5w,). The condition for Eq(3.26) to
be consistent with such a property is tigw;|w,) is posi-
tive. SinceC(w}; X+ R|wy;X) is positive definite, the inte-
gration overR in Eq. (3.27) should be dominant in the region
whereK,(R) is positive, i.e., the region where

R?>3R?—R?>2R?, (3.28

PHYSICAL REVIEWE, 026316 (2003

R

/ \

FIG. 4. In the shaded region the kerrn€l, is positive. The
boundary is determined UQEZZRE. The arrow at the origin rep-
resentsw,(X,r).

perpendicular extension? If such an object is less localized in
perpendicular directions, i.eR >R} , one can expect that
T(w;|w,) is positive, yieldingB(w,) with a value of the
same sign a®\(w;). A model is such that a Burgers-like
compression occurs in thedirection, and this kind of struc-
ture extends in the perpendicular directions similar to a
sheet.

Although the above model can interpret the feature that
the sign of B(w;) is the same as that oh(w,), it also
predicts thaB(w;) ~A(w,) irrespective of sign ofv; on the
contrary to the observation th&(w;) is more symmetric
underw,«— —w; thanA(w,). To overcome the discrepancy
we expand the above model one more step; a localized re-
gion consists of a pair of the positive slope and negative
slope, which is seen in Burgers turbulence. In the perpen-
dicular directions tax such a configuration extends consid-
erably as a sheet. In this mod&(w; ; X+ R|wy;X) is non-
zero even ifw; has an opposite sign t@;. Namely,

Bwy= [ dwi AWD Ty

Wl>

+f, dw; A(wp)T(wilwy).  (3.29
w,<0

l<

Equation(3.29 shows thatB(w,) is contributed to by the
positive component oA(w;) as well as the negative one, so
thatB(w,) is more symmetric thaA(w,). It should be em-
phasized that the proposed model is not the unique model to
interpret the properties @& (w,), but that this model is con-
sistent with those porperties.

whereR? = R3+ R3; the shaded area in Fig. 4 corresponds to

the area (3.28. Hence the integrated value of
K11(R)C(w1;X+R|wy;X) should be larger in the region
(3.28 than in the other region.

To be more specific. Take a case whpwg| is large atX,

IV. RELATIVE MAGNITUDE OF A AND B

In the previous section the DNS-based analysi& @f/,)
andB(w,) was separately given together with the theoretical

whose position is chosen at the orgin in Fig. 4. Let us estijyterpretations. In this section we focus on the combined

mateR7 , the spatial extension & (w; ;X + R|w,;X) along
direction 1 andR}, that in perpendicular directions ta
Sincer is alongx directionR} ~r. How about a size of the

form of A and B. Making use of the definition$3.2) and
(3.3, the cascade rate of, of arbitrary power in the uni-
versal range is given from E@2.20 as
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curvature decreases with the scale. Since the PDF of the
turbulence is skewed toward negative increment,
P(w;)G(w,) is negatively skewed, i.e., it takes larger value
atw;<0 than atw;>0 as appreciated in Fig. 6, which was
also computed from the same DNS data. With the help of
these properties the right-hand side of E43) is evaluated.

(i) For evenn. Sincew?‘2 is positive irrespective of the
sign of wy, the right-hand side of Eq4.3) is negative with
large absolute value
s X (i) For oddn. Sincew! 2 changes sign fow,<0 and for
0 o . . ; . . . w,; >0, the cancellation occurs in the evaluation of the right-
4 6 -4 2 0 2 4 8 8 hand side of Eq(4.3). The negatively skewed conditional

wN<wi> average ofP(w;)G(w;) predicts thatw] ?/G(w;)) is of
small magnitude with negative sign. Hence the right-hand
side of Eq.(4.3) is small positive

We demandH(w,) on the left-hand side of Eq4.3) to
satisfy the numerical estimate of the right-hand side of Eq.
(4.3). The left-hand side is computed for evaras well as

10F

gwy)

FIG. 5. Plot ofg(w,) againstw; /\(w?). g(w,) is related to
G(wy) via g(wy) =G(wy)/ v(| Hw,|?).

(Wi TH(wp) = — (n=1)w(w] *G(wy), (4.1

h for odd n.
where (i) For evenn we express the left-hand side in the follow-
H(wy)=A(wW;) — B(wy). 4.2) ing decomposed form:
n—-1 _ n-1
Equation(4.2) indicates thatH (w,), i.e., the relative magni- (Wi H(wp)=(wa| " H . (wy) +
tude ofA(w;) andB(w;), determines the rate of cascade of —{(Jwq|""TH_(wy))_, (4.5)

w" stuff, which is balanced by the dissipation rate on the
right-hand side of Eq4.1). In order to tackle this issue, we where a plus sign followindd denotes that it is defined at

rewrite Eq.(4.1) as w;>0, and the same sign after the bracket means the aver-
1 N2 age over the positive componentwf, while a minus sign
(Wi "H(wyp))=—(n—1)(wj “G(wy)), (4.3  stands for the same kind of notation.

. o " (i) For oddn we have
where G(w;) on the right hand side is another conditional

average (WEHH (wy)) =(|wa|"TH (W) 4

G(wy) = w(| Vxwy|?|wy). (4.9 +(wg|"TTH(wy)) - (4.6)
Hence the information ofG(w;) determines the relative ~ In order that the left- and right-hand sides of &4.3)
magnitude ofA(w;) andB(w;). G(w;) was already intro- agree with each other, E¢4.5 must be of large magnitude
duced elsewherf28]. with negative sign, while Eq4.6) must be of small magni-

Figure 5 isG(w;) numerically computed from the DNS, tude with positive sign. Hence we are led to
where a normalized quantity g(w;)=G(w,)/ 1
»(|V,wy|?) is displayed. Useful properties d®(w,) are (Iwy|"*H_(wy)) >0, (4.7
listed as followsG(w,) is positive definite as seen from Eq.

n—-1
(4.4). It increases withw;,| as a parabola as in Fig. 5, and the (Iwe]"™*H. (W), <0, 48

and

]
[(Jwa| " TH (W) _[>Kwa " TH L (wy)) o] (4.9

0.01 | Based on the inequalitigg.7)—(4.9) we draw the following
conclusions: from Eq(4.7)
0001 H_(wy)>0—A_(wy)>B_(w;) for w,;<0
(4.10
and from Eq.(4.8
0.000001 | a.4.8)
H, (w;)<0—B,(wq)>A,(wy) for w;>0.
(4.11
w.N<w%> . . . .
The inequalitieg4.10 and(4.11) agree with the numeri-
FIG. 6. Plot of P(w;)g(w,) againstw, /\(w?). cally calculated value oH(w;) from the DNS data as de-

026316-8



ROLES OF CONVECTION, PRESSURE, AND. ..

PHYSICAL REVIEWE, 026316 (2003
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r=19n ——— 1
r=521) e 100 |
r=152n
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01 f
0.01 |
0.001 . .
1 10 100 1000
rm
FIG. 8. Plot ofC,(r) againstr/». The region between the two
arrows is the inertial region.
behavior ofH(w,) in the vicinity of w;=0. Figure Tb) is
_ the closeup oMH(w,); all the curves corresponding to the
£ inertial range scale do not cross the origin. Although crossing

points depend on the scale, they are roughly/\{w?)
~0.1. This means that the inverse cascade of energy takes
place in the interval &w; /\(w?)=<0.1. The reason for it is
a4t ] not known to us at present.

Finally note thatd (w,) is related to the conditional aver-
age of the Laplacian oiv,. If one takes the conditional av-
erage of Eq(2.5) in the universal region, one has

FIG. 7. Plot of h(wy) against w;/\(wW?). <
Wi
i

-1 -08-06-04-02 0 02 04 06 08 1
w.N<w%>

h(w;) is related to H(w;) via h(w,)= \/<w21)H(w1)/
(| Vxw,|?) . (@) In the wide range ofv, and(b) in the vicinity of
W]_:O.

J J
. _ 2
r9er1+(9X15p|W1> r(Voxw,|wy).  (4.19

Hence

picted in Fig. T7a), where a normalized quantitir(w,)
=W(WDH(W)/v(|Vxw,|?) is displayed. The inequality
(4.9), on the other hand, suggests tltht (w,) is more sig-
nificant thanH . (w,).

If we write A, (wq), A_(w,), B, (wy), B_(wy) in the
order of the degree of importance

H(wy) = v{(V2xwq|w,). (4.15

This definition of the conditional average was introduced
elsewherd28|.

V. RELATIONSHIP BETWEEN INERTIAL TERM AND
A_>B,, B_>A,, (4.12 DISSIPATION RATE

where we cannot ordeB, andB_ . Equation(4.12 indi- . In this .section we will inve_stigate what role the digsipa—
cates thatA_(w,) is the most essential in driving fluctua- tON rate, i.e., the right-hand side of EQ.21), plays against
tions toward smaller scales in three-dimensional turbulencdN® inertial term. To this end, we computed
while A, (w,) is the least important. Both pressure terms n_2
B_(w;) and B, (w;) play an intermediate role between c (r):_Zn(n—l)(sl(xl,xz)wl ) 5.1
A_(w4) andA . (w,). Such a property in the pressure term is n (wh* 1>/r ’
consistent with the conclusion in the preceding section that
the pressure term is the average of the negative and positi¥er various integers of againstr using the data of DNS, as
convection terms. depicted in Fig. 8, where the inserted solid line with arrows
Turn to the calculation of the energy transfer raterin at endsr/»=80 and 200 stands for the inertial region. We
space due to the inertial terrfconvective plus pressure summarize the essential points drawn from Fig(iBFor n
termg. The transfer rate is expressed as =4 C,(r) takes constant valu€} independent of in the
inertial region.[Cs(r) depends slightly omr, but it is re-
garded as independent of| It is certain thatCs(r) is not
As can be seen from Fig.(d, H(w,;)>0 for w;<0 and constant in the inertial regiofiii) For even integers af c;
H(w,;)<0 for w;>0, so thatw;H(w;) is negative in the Seem to approach a constant valdefrom above asCj
entire region ofw; irrespective of its sign. The energy cas- >Cg>Cj asn increasesiii) For oddn C}; increases with
cades toward smaller scale for amy. Of interest is the n. At the level of present resolution we could compute only

wiH(wy). (4.13
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up to C,. It is clear thatC% >C% . At this moment it is not

confirmed thaC}; asymptotically approachesfor oddn. It 10 ¢
is probable tha€,, with oddn converges to a different value.
We conclude thatC,(r) approach constant values for 107
large n in the inertial region. What does this mean? To an-
swer to it, let us focus on Ed2.21), which is valid in the 100 |
inertial range. As shown in Appendix A the pressure gradient
term behaves in a similar way to the convection term, so that S
one can express the inertial term as 10
i<W'Wn>+”< T 5P> D(n)—— (WW )- 107 P 0 100 1000
gryt T "1 Gx, TR

(5.2 rm

FIG. 9. Plot ofl,, againstr/». The curves at/7n=200 are

Hence Eq.(2.21) reduces to
a(2.21 1, 13, 12, 15, 14, g, 17, lg, |9, @andl 1o upward from the bottom.

D(n) <WJW1>_ 2n(n—1) (W] 2e1(x1. %)), d d
(5.3 <Wl(arwwl a_><15p)>:

At the level of fourth order the pressure almost screens the
convection term

hy 0 1 g .\ 190
W) TWi—Wq ) = —{ W,—W AW
oMo U o R n&r< Wa)- J
. . ar J
For largen the approximation j

where the following relation has been used:

J
(9—X1é’p~0, (59)

and the effect of fluctuating dissipation rate does not come
in. At order of three it is well known that the structure func-

tion is not affected by the fluctuating dissipation rate. For
holds in the inertial region, wherg, . ; is the scaling expo- highern the scaling exponents are affected by it. At present
nent of the structure function afw]"?). Substituting Eq. We do not reason why the fourth order structure function is
(5.4) into Eq. (5.3 and combining the result with E¢5.1), P_oltdaffected by the intermittency effect of the dissipation
we have 1eld.

n+1> §n+1 Wn+l> (54)

’9_r1< 1W1>~_<W r 1

Cn(r)={¢n+1D(n). (5.9 VI. ROLE OF DISSIPATIVE STRUCTURE

SubstitutingZ,,<n [29] yields In the preceding section we showed that the dissipative
structure plays a crucial role in the structure functions of
order higher than five. On the other hand, as far as the fourth
order structure function is concerned, the dissipation term is
shown to be irrelevant. In this context it is of interest to
Equation(5.6) indicates that the pressure screens the convednvestigate the correlation of dissipation ratg{x; ,x,) with
tion term considerably, but not in a perfect way. [wy(X,r)]", ie.,

Another interesting point found in Fig. 8 is the observa-
tion that C5(r) is not constant even in the inertial region. ln=(Wle,). (6.1)
Puttingn equal to 3 in Eq(2.21), we have

D(n):O(%). (5.6

Other interesting quantities are introduced by extending

19 J . . . .
— (W, ws +<w§—5p> = —A(£1(X1,X2)W1). into noninteger. For that purpose one can imagine two types
3 ar IXy of correlation
(5.7)
A plot of (e1(xq,%)W;)r/(w3) in Fig. 8 indicates that it In=(|w,|"1) (6.2
decreases with. It means that the dissipation term is irrel-
evant in the inertial region. Namely, and
19 Kn=(sgnwy)|wa|"e1), (6.3
Z_ Iwew3 n
3 arj<WJW1>+<W1&X 6p> (5.9
where sgnf)=1 whenx>0 and —1 whenx<0. In the
holds in the inertial region. If Eq5.8) is rewritten, following we deal only withl, andJ, in detail.
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100
J —_—
w0t 7
A
Iy
LT,
10 | 1005
g
J,
10°t
J]O
I S — 3
’/_,_,_ﬂ 107
10—4 N L
0.1 : : 1 10 100 1000
1 10 100 .
rn
) FIG. 11. Plot of], against/ 7. The curves represedj to J,y at
FIG. 10. Comparison off5, 1 /15, 10 15045 /1504 1. r/»=200 from bottom to top.
Al

. _ . . 11 is a plot ofd, againstr/» for n from 1 to 10. We can see
In this subsection we will show how, (X, ,%;) is corre- that 3, scales in a logarithmically ordered way within
lated to[w,(X,r)]". Figure 9 is a plot of , againstr/» for  contrast tol .
n from 1 to 10 based on the DNS. The inertial range is \what is the significance of the this result? Equatidri2
located in betweem/7=280 and 200. The results are sum- |eads us to
marized as follows(i) Forn=2 |, scales withr in a power
law in the inertial region, although the slope is less than the (W " TH(wq)) 4 = (Jwy " TH (wy)) -
K41 valuen/3, reflecting the intermittency effects. It is well B n—2 >
balanced with the left-hand side of E@.21) as discussed in = —v(n=1)(lwq|" %[ Vxwy[?), (6.6
Sec. V.(ii) Perplexing is the case=1. |, decreases with,
on the contrary to the expectatiop~r 3. This tendency is Which was derived in Appendix B. The right-hand side of Eq.
confirmed for many simulations with Reynolds numbers lesg¢6.6) is nothing but Eq(6.2) in the inertial region. According
than 380 together with Jet data Bf =380 [30], although to the arguments in Sec. IM(w,) is positive forw;<0 and
those results are not shown heié) In Fig. 9 we notice that hegative forw; >0, so that both terms on the left-hand side
the slope ofl 4 is very close to that of;. A similar tendency ©Of Eq.(6.6) are negative, bringing about no cancellation. One
holds betweeng andl,. To illuminate such a tendency, we Can approximate the left-hand side of £6.6) by
compard on, 1 /1o With 15,5 /15, 1. The comparison is de-
picted in Fig. 10, which indicates that the former is almost (Jwy 1)
independent of in the inertial region, while the latter is an _“D(n)f' (6.7)
increasing function of.
The property(iii) is understandabld,, can be expressed

. " in accordance with E¢p.2). Here « is a certain numerical
in terms of the conditional average of as

constant independent afandD (n) is of order of 1h. Then
Eq. (6.6) becomes

o= [ Geawnywgpiy vy, (6.4
Jd
- n+1y _ _
Since(e4|w;,)~G(w,) in the inertial region) , is equal to aD(n) or (Iwq|"H=2n(n=1)J5. (6.8
l,= J WIG(W;)P(W;)dw; . (6.5) 1000 ' I
100 | ne5
SinceG(w;)P(w;) is negatively skewed for large amplitude w0l 2:9
n=8

of w; as seen in Fig. 6, it is very probable that the resem-
blance ofl,,, ; to I, is stronger than that d%,, ; to I 5,1 .
This property combined with E@5.3) suggests thaw3™) is
closer to(w?™ ) than to(w2™*1), in accordance with the 01}
observation by Stolovitzky, Sreenivasan, and Juf&}¥ see

1t

ol (y)

also Ref[31]. 0.01 ¢
0.001 . :
B.J, 1 10 100 1000
rn
Turn to the correlation of the longitudinal dissipation rate
g, with the absolute value of the velocity increment. Figure FIG. 12. Plot ofC,(r) againstr/ .
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Equation (6.8) states that],_, is related to the rf+1)th  Substituting a model expression for the pressure, which was
order structure function of the absolute value of the velocityconstructed using the result for the even order structure func-

difference. tion, they evaluated the left-hand side of E@.2), which
Now we are ready to show that the expressiérB) is  must be balanced with the right-hand side. The result is that
correct by plotting the dissipation term dominates the pressure term; the dissi-
pation term balances about 85 to 90% of the convection
- 2n(n—1)J,_» term.
Ch(r)=——rr— (6.9 In the present paper we investigated the full equation. We
(lwa[™5)r did not decompose the convection term in EgJl) into the

_ o . sum of(w3"*2) and(w2"w3) because the longitudinal con-
againstr/z in Fig. 12, whereC,,(r) takes a constant value yection termw,(d/dr,)w; is dealt with as a whole in the
for any n. It seems that it approaches an asymptotic valugyrm of A(w,). Hence we cannot comment on how large the

systematically in the inertial region. Therefore the scalingyressure term is as compared with the decomposed convec-
exponents of the structure function of the absolute value oF

ion terms.
Fhe longitudinal yelocity diffgzrence orde_rly increases with Some conclusions obtained in the present paper can be
in accordance with the previous result in Ri]. compared with the mean field approximation. At the level of
fourth order, the effect of the dissipation term turns out to be
VIl. COMPARISON WITH MEAN FIELD THEORY negligible in the inertial region, which agrees with the as-

sumption employed in the mean field approximation. In the
) . . e rlequations for the structure functions of even order higher
comparison with the mean field approximafiph?,13. It = 5, 6, however, the dissipation term cannot be negligible,
may pe useful to summarize the_ theory by Yakfid]. The . which balances the inertial terftonvective plus pressure
equation for the structure function contains the convectloqerms) in a scaling sense.

term, the pressure term, and the dissipation tgrm. If the pres- Finally we want to add the following remark. Mean field
sure and dissipation terms are expressed in terms of t

In this section we wish to discuss the obtained results i

ther. f hich th i ts will be derived. He. " with evenn. The comparison of, with the inertial term,
other, from which the scaling exponents will be denved. He,q jone jn Fig. 8, however, indicates that the contribution

started with the equation without the pressure and dissipatio]qOm oddn is smaller by a factor 10 than that from evein

terms, and t_hen,_ include those effects in a perturbatlve_: Wa%\greement with the assumption in mean field theory.
This approximation was expected to be valid at the dimen-

sion d close tod;, which is the critical dimension which

distinguishes the three-dimensional turbulence from the two- VIIl. DISCUSSION

dimensional one. Whether=3 is enough close td. must In this section we will argue the origin of the anomalous

be determined by the comparison with experiment and DNSgcajing in three-dimensional turbulence based on the results
Kurien and Sreenivasai13] investigated the validity of  ptained in this paper. Since we have shown elsewfgire

those approximations based on the data in boundary laygpat the scaling exponents of the longitudinal structure func-

turbulence withR, =10700. Their strategy is to evaluate the tjons computed from our DNS data are agreement with the

contribution of the pressure term, which cannot be measureglrrently accepted values, the detailed discussion of the scal-
in experiment, by analyzing the equation for structure funcing exponents is not given here.
tion of even orders where the effect of the dissipation termis “|nstead the following issues are discussed. What is the
considered to be small. They began with E421) with odd  cayse of the anomalous scaling? Is the dissipative structure
n, where the dissipation term is ignored: responsible for it? Does the homogeneous integrodifferential
5 5 equation without the dissipative term, i.e.,
<Wf”(wj—wl+—5p) > =0. (7.2
ar; X4 ey 9 1
<Wl wjﬁwl> —f dRK(R)(wy ~(X,r)
Substituting the measured contribution of the convection .
term into Eq.(7.1) enabled them to estimate the contribution
of the pressure term as 10% of the component of the con-
vection term such aéw3"**ow,/ar). Then they turned to
the equation for the structure function of odd order; pluggingyield a solution with the lower scaling exponents for the
evenn into Eq.(2.21) yields structure functions? What is a role of the pressure term in

structure functions?

XWk(X+R,r)%Wj(X+R,r))=O, (8.1)
k

ol The study ofC,(r) in Sec. V indicates thate ;W) scales

W1 Wj(;_rjler a—xlﬁp in the same way aéw}"3)/r as long am=2. This implies
on that the dissipative structure is responsible for the anomalous
=—2(2n+1)(wy"e1(X1,X2)). (7.2 scaling of the structure functions of order larger than 5. Since
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Appendix A, it contributes to the numerical coefficients of

those structure functions, but not to their scalings. The ho-

mogeneous equatiof8.1) cannot yield a more intermittent

solution than the inhomogeneous solution. X f dRK;; (R)Tij (R/T). (AS)
The above discussion does not hold for the fouorth order

structure fur_mt'g?.’ which scales a_nomalously ras” [8] Here the summation is taken overThe first factor on the

compared withr ¥~ in K41. The equation for the fourth order right-hand side of Eq(A5)

structure function is confirmed not to be affected by the dis-

sipative term, and the homogeneous integrodifferential equa-

the pressure term scales as the convection term as shown in hq .
w; W&p =—(W;(X,r)"Ej(X,r))
I

. : . ) -1

tion must yields the anomalous scaling solution. It suggests (Wi(X,n)"7Ej(X,r)) (A6)

that the pressure term may be responsible for the anomalous

scaling of fourth order. is expected to follow the same scaling as the convection term

Hence the following scenario is possbile. At any order thefor j=i.
pressure term brings about the anomalous scaling. The dissi- Now turn to the examination as to whether another scal-
pative term only adjusts to the inertial term, i.e., the summaing factor inr arises from the geometrical factor
tion of the convective and pressure terms. At fourth order
such a balance is broken, but at larger orders the balance is
satisfied. J dRK;j; (R)f;(R/T). (A7)
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APPENDIX A: CONTRIBUTION OF THE PRESSURE -
TERM IN EQ. (2.19 fii(RID~\ | (A9)

Let us focus on the pressure term in E2.19. Substitut-
ing Eq.(2.10 into it, we have where & is positive. This time the contribution frorR,
+dR>R>R, decreases witlR, . The above consideration
n-1 indicates that the main contribution comes frdR-cr,
<Wi 3_)(i5p> - _f dRKj(R)Lij(Rr), (A \yherec s of order of unity, which implies that E4A7) is a
numerical factor. Therefore the left-hand side of E41)
where scales in exactly the same way as the convection term.

Lij(R,r)=(w;(X,r)" *E;(X+R,r)), (A2)
APPENDIX B: DERIVATION OF EQ. (6.6

whereE; is defined in Eq(3.17). In Eq. (Al) Let us start with Eq(2.12

K. (R) S PRPALL (A3) F p)
ij = 3| Yij T ° T o N\ n—1
27R R p W+ 7. Viw;+nw;
In Eqg. (A1) the summation is taken only ovérnot overi. p
Sincer is chosen alongx direction, the tensor form of X Wja_wl+ Wép —nw)tsf,
Lij(R,r) is specified only byR. ThenL;;(R,r) can be rep- "y 1
resented as =pVaw]—n(n—1)»w] 2| Vyw,|?, (B1)

Lij (R, =(w;(X,1)"'E;(X,n)f;(RIT),  (A4) _ _ o
and the equation obtained through multiplying EB1) by
where the summation is not taken oyeiThen (=),
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(W)™ 2V wy)n(—w)
gt T T gx Tt !

d

x| wjo—wy Sp|+n(—wy)""1sf,
i

+ (971
= vVi(—wy)"=n(n—1)v(—wy)" 2| Vyew,|%.
(B2

Let us take the sum of the integration of EB1) multiplied
by P(w;)dw; from 0 toe and that of Eq(B2) multiplied by

P(w;)dw; from —oo to 0. The time derivative term becomes

0" n
E<|W1| )

PHYSICAL REVIEW E 67, 026316 (2003
also vanishes because of the homogeneity of the system. The
external forcing term can be neglected in the universal re-
gion. The viscous transport term

V(wa|")

becomes zero because of the homogeneity. Finally we have

o J J
n—1 . o
fo w3 (WI ar, wy+ X, 5p) P(wq)dw;

0 d 14
—_ —_ n-1 — —_
[" (w, e ax15p) P(wy)dw;

which vanishes because of the stationarity of turbulence. Thﬂewriting Eq.(B3) with the use ofH(w,), we have

convection term

P
(9—Xj(Vj lwq|™)

= —v(n—1)(|wy|" "% Vewy|?). (B3)
(W TH (W) — (w | H (wy) ) -
=—v(n—21)(|w,|"" 2| Vxw,|?). (B4)
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