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Roles of convection, pressure, and dissipation in three-dimensional turbulence

Tohru Nakano*
Department of Physics, Chuo University, Tokyo 112-8551, Japan

Toshiyuki Gotoh†

Department of Systems Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan

Daigen Fukayama‡

Information and Mathematical Science Laboratory, Inc., Tokyo 171-0014, Japan
~Received 27 June 2002; published 27 February 2003!

We investigated the roles of the convection, pressure, and dissipation terms in the equation for the longitu-
dinal velocity increment, with the help of the DNS data on 10243. The pressure screens the convection growing
as the intensity of fluctuation increases. The dissipation term is found to make no direct contribution to the
fourth order structure function; the structure functions of order not less than 5 are affected by the dissipative
structure as far as the scaling is concerned. A reason is also given for the observation by Stolovitzkyet al.
@Phys. Rev. E48, R3217~1993!# that the scaling of the (2m)th order structure function is more similar to that
of the (2m21)th order structure function than that of (2m11)th order structure function.
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I. INTRODUCTION

The scaling of the longitudinal structure function is one
the main subjects in turbulence@1–3#. It is now well estab-
lished@4–8# that the scaling deviates from the original Ko
mogorov scaling, i.e., K41@9#. What is responsible for the
deviation? The spatially nonuniform energy dissipation r
@10,11# has been thought of as a main candidate for it si
Landau’s comment. Recently Yakhot@12# proposed the mean
field approximation, which was based on the neglect of
pressure term and the dissipation term, and the additio
these terms in a perturbative way. Kurien and Sreeniva
@13# investigated the validity of his various equations usi
the data in the atmospheric boundary turbulence. In this c
text it is interesting to know whether and how the dissipat
structure and the pressure gradient affect the scaling in
bulence. Such a study is also useful for modeling turbule
in LES.

Currently the anomalous scaling has been addressed
the passive scalar field advected by the delta-correlated
locity field @14–21#. In this issue the advection and dissip
tion terms are combined into a single operator of sec
derivative, and a homogeneous solution of the operato
associated with the anomalous scaling of the scalar struc
function @17,21#. The three-dimensional turbulence is, ho
ever, much more complicated for the following reasons.~i!
Since the convection term is nonlinear, the dissipation te
cannot be combined with the convection term.~ii ! There is a
nonlocal pressure term, which is the superposition of
divergence of the convection term from afar. The pres
paper aims to theoretically investigate roles of the conv
tion, pressure, and dissipation terms in the equation for
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longitudinal velocity increment, with the assistance of t
DNS on 10243 meshes.

We will employ two methods. The first is to compute th
conditional averages of the three fundamental terms,
convection, pressure, and dissipation terms, with a value
the longitudinal velocity differencew1 being fixed. Since the
conditional averages are a function ofw1, the averaged
quantities reveal the amplitude-dependent effects of th
terms. The second is to investigate the equation for a st
ture function of arbitrary order, which consists only of th
convection, pressure, and dissipation terms in the inertial
gion. We check how three terms satisfy the equation in
balanced way.

The findings in this work are as follows. We start with th
equation for the velocity increment in physical space, fro
which the equation for the structure function is derived;
contains only the convection, pressure, and dissipation te
in the inertial region. In order to know the roles of the co
vection and the pressure we compute the conditional a
ages of the convection and pressure terms with a fixed v
w1 of the longitudinal velocity difference from the DNS
data. The sign of the conditional average of the pressure t
is found to be opposite to that of the convection term, so t
the pressure screens the convection partly. The relative m
nitude of both averages is estimated; the convection term
predominant over the pressure one atw1,0, while the latter
is larger than the former atw1.0.

The relation between the inertial term~the convection
term plus the pressure term! and the dissipation term is ex
amined based on the equation for the structure function.
dissipative term is negligible as compared with the iner
term in the inertial region of the fourth order structure fun
tion, while it becomes comparable and balances with
inertial term for the structure functions of order equal to
higher than 5. The pressure is found to screen the convec
increasingly as the order of the structure function grows.

Next we turn to the correlationI n of the longitudinal dis-
©2003 The American Physical Society16-1
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sipation field with thenth power of the longitudinal velocity
difference. Forn>2, I n scales with the exponent less tha
the K41 valuen/3 in the inertial region, whileI 1 decreases
with r, unlike the K41 expectationr 1/3. We also show that
the scaling exponent ofI 2n21 is closer to that ofI 2n22 than
that of I 2n . This finding is consistent with the observation b
Stolovitzky et al. @22# that the scaling of̂ w1

2m& is closer to
that of ^w1

2m21& than that of̂ w1
2m11&. The correlationJn of

the longitudinal dissipation rate with thenth power of the
absolute value of the longitudinal velocity increment is a
investigated;Jn behaves orderly withn in contrast toI n ,
indicating the scaling exponent of the structure function
sociated with the absolute value of the longitudinal veloc
increment increases withn orderly in the inertial region in
accordance with our previous result@8#.

The present paper is organized in the following way.
Sec. II we prepare the fundamental equation for the velo
increment in physical space, from which the equation for
structure function is derived. Section III is devoted to t
analysis of the conditional average of the convective a
pressure terms with a fixed valuew1 of the longitudinal ve-
locity difference. First, those averages are computed from
DNS data, and then their features are theoretically in
preted. The relative order of magnitude of the both con
tional averages is estimated in Sec. IV. In Sec. V we inv
tigate the relation between the inertial term and
dissipation term based on the equation for the structure fu
tion. Section VI is devoted to the evaluation of the corre
tion of the longitudinal dissipation field with an arbitrar
power of the longitudinal velocity difference. We also co
sider the correlation of the dissipation rate with an arbitr
order of the absolute value of the longitudinal velocity inc
ments. In Sec. VII we discuss the results obtained in
present paper in comparison with the mean-fie
approximated results@12,13#. Section VIII is devoted to the
discussion as to the anomalous scaling of longitudinal ve
ity increments.

II. EQUATION FOR VELOCITY DIFFERENCE

Let us introduce the velocity increment at two pointsx1
andx2 as

wi~x1 ,x2!5ui~x2!2ui~x1!. ~2.1!

The equation forwi is obtained by taking the difference o
the Navier-Stokes equations of unit mass density at
pointsx1 andx2:

]

]t
wi~x1 ,x2!1S uj~x2!

]

]x2 j
1uj~x1!

]

]x1 j
Dwi~x1 ,x2!

52S ]

]x2i
1

]

]x1i
D dp~x1 ,x2!1d f i~x1 ,x2!

1n~¹2
21¹1

2!wi~x1 ,x2!, ~2.2!

wheredp andd f i are the differences of pressure and exter
forces at two points
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dp~x1 ,x2!5p~x2!2p~x1!,
~2.3!

d f i~x1 ,x2!5 f i~x2!2 f i~x1!.

Throughout the present paper we will employ the convent
that the summation is taken over repeated indices ofj andk
without otherwise stated, while it is not taken overi. Intro-
ducingX and r as

X5~x11x2!/2, r5x22x1 , ~2.4!

Eq. ~2.2! reduces to

]

]t
wi1Vj

]

]Xj
wi1wj

]

]r j
wi52

]

]Xi
dp1d f i1n¹X

2wi ,

~2.5!

whereV is the average velocity defined as

V5@u~x1!1u~x2!#/2. ~2.6!

In deriving the right hand side of Eq.~2.5! we made use of
the identity

~¹2
21¹1

2!wi5~¹21¹1!2wi5¹X
2wi , ~2.7!

because

¹1•¹2wi50.

The incompressible condition now takes the forms

]

]r j
wj5

]

]Xj
wj5

]

]r j
Vj5

]

]Xj
Vj50, ~2.8!

because

]

]r j
wj5

]

]Xj
@uj~X1r /2!2uj~X2r /2!#50

and so on.~Note that the partial derivative ofwi with respect
to x1 should be carried out withx2 fixed and vice versa.
Similarly the partial derivative ofwi with respect toX should
be carried out withr fixed and vice versa.!

The pressure difference can be computed by taking
divergence of Eq.~2.5! with respect toX, i.e., by operating
]/]Xi on Eq.~2.5!. Then

¹X
2dp52

]

]Xj
FVk

]

]Xk
wj1wk

]

]r k
wj G

522
]

]Xj
Fwk

]

]r k
wj G , ~2.9!

because

]Vj

]Xk
5

]wj

]r k
.

Hence the pressure gradient appearing in Eq.~2.5! becomes
6-2
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]

]Xi
dp~X,r !52E dX8Ki j ~X2X8!wk~X8,r !

3
]

]r k
wj~X8,r !, ~2.10!

where

Ki j ~R!5
1

2pR3 Fd i j 23
RiRj

R2 G . ~2.11!

The equation forwi
n is easily derived by multiplying Eq

~2.5! by nwi
n21 :

]

]t
wi

n1Vj

]

]Xj
wi

n1nwi
n21S wj

]

]r j
wi1

]

]Xi
dpD2nwi

n21d f i

5n¹X
2wi

n2n~n21!nwi
n22u¹Xwi u2. ~2.12!

This type of equation was already introduced elsewh
@12,13,23,24#. The second term on the right-hand side of E
~2.12! represents the viscous dissipation ofwi

n stuff, while
the first term does the spatial transport of the same stuff
to molecular viscosity, which conserveswi

n in the entire sys-
tem. It should be emphasized, therefore, that the first term
the right-hand side of Eq.~2.12! has nothing to do with the
dissipation ofwi

n .
The right-hand side of~2.12! may be written in a different

form:

nS 1

2
¹X

2 12¹ r
2Dwi

n2n~n21!nwi
n22@ u¹2wi u21u¹1wi u2#

5nS 1

2
¹X

2 12¹ r
2Dwi

n2n~n21!nwi
n22

3@ u¹2ui~x2!u21u¹1ui~x1!u2#, ~2.13!

where the content in the angular brackets is the sum of
energy dissipation rate at two pointsx1 andx2. However, the
expression~2.12! is more meaningful in dealing with th
velocity increment itself, because Eq.~2.12! indicates that
the spatial gradient ofwi leads to the dissipation ofwi

n .
The equation for thenth order structure function is ob

tained by taking the ensemble average of Eq.~2.12!. Since
the system is stationary in time and homogeneous in sp
the first term on the left-hand side of Eq.~2.12! does not
contribute. The second term also vanishes because

K Vj

]

]Xj
wi

nL 5
]

]Xj
^Vjwi

n&50.

Then Eq.~2.12! reduces to

nK wi
n21S wj

]

]r j
wi1

]

]Xi
dpD L 2n^wi

n21d f i&

52n~n21!n^wi
n22u¹Xwi u2&. ~2.14!
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Here the last term on the left-hand side of Eq.~2.14! is the
contribution from external forces, while the right-hand si
of Eq. ~2.14! is contributed by the molecular dissipation.
we focus on the universal region independent of how tur
lence is excited externally, we can ignore the external forc
term

nK wi
n21S wj

]

]r j
wi1

]

]Xi
dpD L

52n~n21!n^wi
n&. ~2.15!

If we use Eq.~2.13! instead, we have another expressi
for ^wi

n& in place of Eq.~2.15!:

nK wi
n21S wj

]

]r j
wi1

]

]Xi
dpD L

52n¹ r
2^wi

n&22n~n21!^wi
n22« i~x1 ,x2!&, ~2.16!

where

« i~x1 ,x2!5
n

2
~ u¹ui~x2!u21u¹ui~x1!u2!. ~2.17!

Note that« i(x1 ,x2) is related to the average energy dissip
tion rate«̄ through

«̄5(
i

^« i~x1 ,x2!&. ~2.18!

The right-hand side of Eq.~2.16! consists of two terms. The
first term represents the rate of molecular diffusion of^wi

n&
in r space, while the second term stands for the contribu
due to the correlation between the energy dissipation rate
wi

n22 . The molecular diffusion term is smaller by a factor
(r d /r )4/3 (r d is the dissipation scale! than the inertial term
within K41, so that we are led to

K wi
n21S wj

]

]r j
wi1

]

]Xi
dpD L

522~n21!^wi
n22« i ~X1,X2!& ~2.19!

in the inertial region. Ifn is equated to 2 in Eq.~2.19!, it
reduces to the Kolmogorov’s 4/5 law. Hence Eq.~2.19! may
be called the generalized Ka´rmán-Howarth-Kolmogorov re-
lation.

In the following we focus only on the statistical behavi
of the longitudinal increment. Whenr is chosen in thex
direction, Eq.~2.15! with i 51 becomes

K w1
n21S wj

]

]r j
w11

]

]X1
dpD L 52~n21!n^w1

n22u¹Xw1u2&,

~2.20!

which is valid in the universal region including the dissip
tive one. On the other hand, in the inertial region we hav
6-3



io
in
re
f

ion
e
e
in
le

e
th

s-

a

ve

19
-

of
t

n-
pply

d

y

-

NAKANO, GOTOH, AND FUKAYAMA PHYSICAL REVIEW E 67, 026316 ~2003!
K w1
n21S wj

]

]r j
w11

]

]X1
dpD L

522~n21!^w1
n22«1~x1,x2!&. ~2.21!

Hereafter the termwj (]/] r j
)w11(]/]X1)dp is called the in-

ertial term for convenience, which consists of the convect
term plus the pressure term. We will address the follow
issues:~i! what a role the pressure gradient plays compa
with the convection term and~ii ! whether the correlation o
the longitudinal dissipative rate«1(x1 ,x2) with w1

n22 affects
the (n11)th order structure function.

III. CONDITIONAL AVERAGE OF CONVECTION AND
PRESSURE TERMS

In this section we focus on the roles of the convect
term and the pressure gradient term on the left-hand sid
Eq. ~2.20!. In particular we consider a problem on how th
pressure term affects the convection term, to modify the
ertial term. It is intuitively believed that the incompressib
condition forces the pressure to screen the convection.

Instead of directly treating the left-hand side of Eq.~2.20!,
it is useful to rewrite it as

E dw1@A~w1!2B~w1!#w1
n21P~w1!, ~3.1!

whereA(w1) andB(w1) are the conditional averages of th
convection term and the pressure gradient term with
value of the longitudinal velocity increment fixed atw1;

A~w1!5 K wj

]

]r j
w1uw1L ~3.2!

and

B~w1!52 K ]

]X1
dpuw1L . ~3.3!

In Eq. ~3.1! P(w1) is a probability density function~PDF! of
the longitudinal velocity increment. In what follows we di
cussA(w1) andB(w1) separately.

A. A„w1…

Figure 1 is a plot ofA(w1) againstw1 divided byA^w1
2&.

A(w1) was computed using the data of DNS, which w
carried out on 10243 meshes, withRl5380. The sampling
was done at 138 different times over 6.6 eddy turno
times; the inertial region is located between 80<r /h<200.
The detail of the simulation is given in Refs.@8,25#. In order
to show the scale dependence of the behavior ofA(w1)
clearly, we give the curves for 19<r /h<304 in Fig. 1~a!,
and those for 4.8<r /h<19 in Fig. 1~b! separately. From
these figures we have the following summary.~i! A(w1) re-
sembles a parabola, and the curvature decreases with
increase of the scale as long as the scale is larger thanh.
For r less than 19h, i.e., in the dissipative region, the curva
ture decreases on the contrary asr decreases.~ii ! The pa-
02631
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rabola is asymmetric, i.e., it is larger on the negative side
w1 than on the positive side ofw1. This tendency is the mos
significant at the smallest separationr 54.8h. ~iii ! The mini-
mum of A(w1) is negative, located around the origin ofw1.

Let us reason the above features ofA(w1). To this end,
we introduce an illuminating model forwi in Eq. ~2.1!. At
first we are tempted to Taylor expand Eq.~2.1! in powers of
r. However, the derivative of the velocity field is the stro
gest on a dissipative scale, so that one cannot directly a
the Taylor expansion to Eq.~2.1!. Sincewi represents the
intensity of the velocity field of a scaler, it makes no differ-
ence even if Eq.~2.1! is replaced by

wi~x1 ,x2!5ũi~x2!2ũi~x1!, ~3.4!

whereũi(x2) is the coarse-grained velocity field transmitte
through a filter with widthr; ũi(x2) is smooth on scales
smaller thanr. Now we can Taylor expand Eq.~3.4!:

wi~X,r !5r j

]

]Xj
ũi~X,r !5Si j r j2

1

2
« i jk r jVk , ~3.5!

whereSi j andVk are slowly varying strain rate and vorticit
of a scaler; they may be a function ofX andr , but we will
ignore their dependence for simplicity.

Sincer is assumed to be along a direction 1,r 1 is equated
to r, while r 2 and r 3 go to zero. However the limiting pro

FIG. 1. Plot ofA(w1) againstw1 /A^w1
2& ~a! in the range be-

tweenr 519h and 304h and ~b! in a range smaller thanr 519h.
6-4
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cedure must be takenonly after the differentiation. Let us
write downwi explicitly using Eq.~3.5!:

w15S11r 11S S1b2
1

2
«1bkVkD r b , ~3.6!

wa5S Sa12
1

2
«a1kVkD r 11S Sab2

1

2
«abkVkD r b , ~3.7!

where we employed the convention that Roman letters
over from 1 to 3, while Greek letters over 2 and 3 only.

Then the longitudinal convection term takes the form

wj

]

]r j
w15w1

]

]r 1
w11wa

]

]r a
w1

⇒FS11
2 1S1a

2 2
1

4
Va

2 G r , ~3.8!

where the last expression was obtained after taking the l
that r 1 goes tor, while r 2 andr 3 go to zero. SinceA(w1) is
the conditional average of Eq.~3.8! with a fixed value of
w15S11r , we have

A~w1!5r K S11
2 1S1a

2 2
1

4
Va

2 uS11L . ~3.9!

First we tentatively assume thatS1a and Va are statisti-
cally independent ofS11. Then

A~w1!5S11
2 r 1 K S1a

2 2
1

4
Va

2 L r . ~3.10!

The second term in Eq.~3.10! is equal to2^S11
2 & because

K wj

]

]r j
w1L 5 K wj

]

]Xj
V1L 5

]

]Xj
^wj V1&50,

so that

r K S11
2 1S1a

2 2
1

4
Va

2 L 50. ~3.11!

Finally we are led to

A~w1!5r @S11
2 2^S11

2 &#5
1

r
@w1

22^w1
2&#. ~3.12!

The expression~3.12! is symmetric with respect tow1, and
agrees roughly with the observed form ofA(w1) in Fig. 1
except for the asymmetricity inA(w1).

Next let us consider the asymmetric nature ofA(w1). To
this end we focus on the large amplitude ofw15S11r . In the
region whereS11 is positive, the vorticity is amplified. Sinc
the direction of the vorticity is, however, along the interm
diate strain-rate eigenvector@26#, Va is large in~3.9!. Hence
the variableS11

2 2 1
4 Va

2 is much depressed fromS11
2 whenw1

is positive. In the region whereS11 is negative, the enhance
02631
n
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ment of the vorticity does not operate, so that such a dep
sion does not occur. In consequence, the asymmetric p
erty of A(w1) is expected from Eq.~3.9!.

It is important to check whether the result obtained abo
agrees quantitatively with the observed value ofA(w1) by
substituting the computed coarsed grained variab
S11, S1a , and Va into Eq. ~3.9!. This problem will be in-
vestigated in the future. Here we are content with compar
the isotropic form~3.12!, which is referred to asA0(w1),
with the observed isotropic value

Ã~w1!5
1

2
@A~w1!1A~2w1!#. ~3.13!

There is a quantitative difference betweenA0(w1) and
Ã(w1): A0(w1) is overestimated. In Fig. 2 we compa
A0(w1)/4, which is by a factor four smaller thanA0(w1), to
Ã(w1) at r 5107h. The comparison suggests that the a
proximation used in deriving Eq.~3.12! is quantitatively
wrong, i.e., there is strong statistical correlation betweenS11
and S1a and Va . Figure 2 indicates, furthermore, that th
discrepancy betweenA0(w1) and Ã(w1) increases with the
intensity ofw1. There are three conceivable reasons for it.~i!
The statistical correlation betweenS11 and S1a and Va in-
creases with the magnitude ofw1. ~ii ! There is a saturationa
effect for largew1 at such an inertial separation, because
events with large amplitude are suppressed due to the fi
Reynolds number.~iii ! The number of samples is not suffi
cient.

The same tendency is observed for other separations~i!
We need a multiplication factor ranging from 1/3 to 1/4
compareA0(0) with Ã(0). ~ii ! For large amplitude ofw1 the
discrepancy betweenA0(w1) andÃ(w1) increases withuw1u.

Let us consider the rate of energy transfer due to the c
vection term in scale space. The rate becomes

w1wj

]

]r j
w15S11FS11

2 1S1a
2 2

1

4
Va

2 G r 2, ~3.14!

where Eqs.~3.6! and~3.8! have been used, although the st
tistical correlation betweenS11, S1a , andVa must be taken

FIG. 2. Comparison ofA0(w1)/4 with Ã(w1) at r 5107h.
6-5
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into consideration for more detailed quantitative evaluati
There are a few conclusions drawn from Eq.~3.14!. ~i! If one
assumes thatS1a andVa are statistically independent ofS11,
we have the usual form for an average transfer rate bec
^S11&50:

K w1wj

]

]r j
w1L 5^S11

3 &r 25
^w1

3&
r

. ~3.15!

Since energy cascades toward smaller scales,^w1
3& is nega-

tive. ~ii ! Equation~3.14! suggests that the energy cascades
an inverse direction in the region where the vorticity
strong in such a way thatVa

2.4S1 j
2 in consistent with the

result by Horiuti@27#.
Finally we consider the amplitude-dependent energy c

cade rate. WhenA(w1) is given by Eq.~3.12!, the amplitude-
dependent energy transfer rate inr space is evaluated as

w1A~w1!5
1

r
w1@w1

22^w1
2&#. ~3.16!

Let us limit ourselves touw1u.A^w1
2&. In this case the trans

fer rate is negative forw1,0, which means the energy ca
cade toward smaller scale. The situation forw1.0 is oppo-
site. This tendency is completely consistent with the Burg
picture. For small amplitude such asuw1u,A^w1

2&, on the
other hand, the direction of the energy cascade is opposi
the caseuw1u.A^w1

2&.

FIG. 3. Plot ofB(w1) againstw1 /A^w1
2& ~a! in the range be-

tweenr 519h and 304h and ~b! in a range smaller thanr 519h.
02631
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B. B„w1…

The computed value ofB(w1) from the DNS is given in
Fig. 3: the curves for 19<r /h<304 in Fig. 3~a!, and those
for 4.8<r /h<19 in Fig. 3~b!. Most essential features o
B(w1) are ~i! B(w1) has the same sign asA(w1), ~ii ! the
scale dependence ofB(w1) is very similar to that ofA(w1),
and ~iii ! it is comparatively symmetric underw1↔2w1 in
contrast toA(w1). We will address these issues below.

Substituting Eq.~2.10! into Eq. ~3.3! yields

B~w1!5E dRK1 j~R!^Ej~X1R!uw1 ;X&, ~3.17!

where

Ej5wk

]

]r k
wj ~3.18!

and

K1 j~R!5
1

2pR3 Fd1 j23
R1Rj

R2 G . ~3.19!

In Eq. ~3.17! we have inserted the position vectorX to sig-
nify that the average ofEj (X1R) is computed with a fixed
value ofw1 at X.

Let us rewrite Eq.~3.17! in the decomposed form

B~w1!5E dRK11~R!^E1~X1R!uw1 ;X&

1E dRK1a~R!^Ea~X1R!uw1 ;X&. ~3.20!

The second term is the contribution from the transverse c
ponentEa , where the kernelK1a is proportional toR1Ra . If
turbulence has a peculiar structure such that^E1(X
1R)uw1 ;X& is an odd function ofRa , the nondiagonal com-
ponent may contribute to Eq. ~3.20!. ~If ^Ea(X
1R)uw1 ;X& is an even function ofR1, it vanishes.! It is
reasonable, however, to assume that the main contribu
comes from the first term on the right-hand side of E
~3.20!, whose kernelK11(R) is an even function ofR. Under
this approximation

B~w1!5E dRK11~R!^E1~X1R!uw1 ;X&, ~3.21!

where

K11~R!5
1

2pR3 F123
R1

2

R2G . ~3.22!

In order to relateB(w1) to A(w1) in a certain way we
insert the state ofw18 at X1R in the computation of the
conditional average in the integrand of Eq.~3.21!:
6-6
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^E1~X1R!uw1 ;X&

5E dw18^E1~X1R!uw18 ;X1R&C~w18 ;X1Ruw1 ;X!

5E dw18A~w18!C~w18 ;X1Ruw1 ;X!, ~3.23!

where C(w18 ;X1Ruw1 ;X) is a probability thatw1(X1R)
takes on a valuew18 provided that a value ofw1(X) is speci-
fied atw1. HenceC must satisfy a normalization condition

E dw18C~w18 ;X1Ruw1 ;X!51. ~3.24!

Note that the limiting form ofC(w18 ;X1Ruw1 ;X) is such as

C~w18 ;X1Ruw1 ;X!5H d~w182w1! as R→0

P~w18! as R→`,
~3.25!

whereP(w18) is the PDF ofw18 .
Plugging Eq.~3.23! into Eq. ~3.21!, we have

B~w1!5E dw18A~w18!T~w18uw1!, ~3.26!

where

T~w18uw1!5E dRK11~R!C~w18 ;X1Ruw1 ;X!.

~3.27!

If C(w18 ;X1Ruw1 ;X) is isotropic with respect toR, the
right-hand side of Eq.~3.27! vanishes due to the integratio
over the angle ofR. Hence the both limiting values o
C(w18 ;X1Ruw1 ;X) in Eq. ~3.25! do not make any contribu
tion to the right hand-side of Eq.~3.27!, so that the dominan
contributing region ofR is of the intermediate scale rang
typically of order ofr, as shown in Appendix A. Furthermor
C(w18 ;X1Ruw1 ;X) must be anisotropic there.

Based on Eqs.~3.26! and ~3.27!, we propose a mode
which interprets the most essential property ofB(w1) that it
has the same sign asA(w1). The condition for Eq.~3.26! to
be consistent with such a property is thatT(w18uw1) is posi-
tive. SinceC(w18 ;X1Ruw1 ;X) is positive definite, the inte-
gration overR in Eq. ~3.27! should be dominant in the regio
whereK11(R) is positive, i.e., the region where

R2.3R1
2→R'

2 .2R1
2 , ~3.28!

whereR'
2 5R2

21R3
2 ; the shaded area in Fig. 4 corresponds

the area ~3.28!. Hence the integrated value o
K11(R)C(w18 ;X1Ruw1 ;X) should be larger in the regio
~3.28! than in the other region.

To be more specific. Take a case whereuw1u is large atX,
whose position is chosen at the orgin in Fig. 4. Let us e
mateR1* , the spatial extension ofC(w18 ;X1Ruw1 ;X) along
direction 1 andR'

* , that in perpendicular directions tox.
Sincer is alongx directionR1* ;r . How about a size of the
02631
o
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perpendicular extension? If such an object is less localize
perpendicular directions, i.e.,R'

* @R1* , one can expect tha
T(w18uw1) is positive, yieldingB(w1) with a value of the
same sign asA(w1). A model is such that a Burgers-lik
compression occurs in thex direction, and this kind of struc-
ture extends in the perpendicular directions similar to
sheet.

Although the above model can interpret the feature t
the sign of B(w1) is the same as that ofA(w1), it also
predicts thatB(w1);A(w1) irrespective of sign ofw1 on the
contrary to the observation thatB(w1) is more symmetric
underw1↔2w1 thanA(w1). To overcome the discrepanc
we expand the above model one more step; a localized
gion consists of a pair of the positive slope and negat
slope, which is seen in Burgers turbulence. In the perp
dicular directions tox such a configuration extends consi
erably as a sheet. In this modelC(w18 ;X1Ruw1 ;X) is non-
zero even ifw18 has an opposite sign tow1. Namely,

B~w1!5E
w18.0

dw18 A~w18!T~w18uw1!

1E
w18,0

dw18 A~w18!T~w18uw1!. ~3.29!

Equation~3.29! shows thatB(w1) is contributed to by the
positive component ofA(w1) as well as the negative one, s
thatB(w1) is more symmetric thanA(w1). It should be em-
phasized that the proposed model is not the unique mode
interpret the properties ofB(w1), but that this model is con-
sistent with those porperties.

IV. RELATIVE MAGNITUDE OF A AND B

In the previous section the DNS-based analysis ofA(w1)
andB(w1) was separately given together with the theoreti
interpretations. In this section we focus on the combin
form of A and B. Making use of the definitions~3.2! and
~3.3!, the cascade rate ofw1 of arbitrary power in the uni-
versal range is given from Eq.~2.20! as

FIG. 4. In the shaded region the kernelK11 is positive. The
boundary is determined byR'

2 52R1
2 . The arrow at the origin rep-

resentsw1(X,r ).
6-7
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^w1
n21H~w1!&52~n21!n^w1

n22G~w1!&, ~4.1!

where

H~w1!5A~w1!2B~w1!. ~4.2!

Equation~4.2! indicates thatH(w1), i.e., the relative magni-
tude ofA(w1) andB(w1), determines the rate of cascade
wn stuff, which is balanced by the dissipation rate on t
right-hand side of Eq.~4.1!. In order to tackle this issue, w
rewrite Eq.~4.1! as

^w1
n21H~w1!&52~n21!^w1

n22G~w1!&, ~4.3!

whereG(w1) on the right hand side is another condition
average

G~w1!5n^u¹xw1u2uw1&. ~4.4!

Hence the information ofG(w1) determines the relative
magnitude ofA(w1) and B(w1). G(w1) was already intro-
duced elsewhere@28#.

Figure 5 isG(w1) numerically computed from the DNS
where a normalized quantity g(w1)5G(w1)/
n^u¹xw1u2& is displayed. Useful properties ofG(w1) are
listed as follows.G(w1) is positive definite as seen from Eq
~4.4!. It increases withuw1u as a parabola as in Fig. 5, and th

FIG. 5. Plot ofg(w1) againstw1 /A^w1
2&. g(w1) is related to

G(w1) via g(w1)5G(w1)/n^u¹Xw1u2&.

FIG. 6. Plot ofP(w1)g(w1) againstw1 /A^w1
2&.
02631
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curvature decreases with the scale. Since the PDF of
turbulence is skewed toward negative increme
P(w1)G(w1) is negatively skewed, i.e., it takes larger val
at w1,0 than atw1.0 as appreciated in Fig. 6, which wa
also computed from the same DNS data. With the help
these properties the right-hand side of Eq.~4.3! is evaluated.

~i! For evenn. Sincew1
n22 is positive irrespective of the

sign of w1, the right-hand side of Eq.~4.3! is negative with
large absolute value.

~ii ! For oddn. Sincew1
n22 changes sign forw1,0 and for

w1.0, the cancellation occurs in the evaluation of the rig
hand side of Eq.~4.3!. The negatively skewed conditiona
average ofP(w1)G(w1) predicts that̂ w1

n22uG(w1)& is of
small magnitude with negative sign. Hence the right-ha
side of Eq.~4.3! is small positive.

We demandH(w1) on the left-hand side of Eq.~4.3! to
satisfy the numerical estimate of the right-hand side of E
~4.3!. The left-hand side is computed for evenn as well as
for odd n.

~i! For evenn we express the left-hand side in the follow
ing decomposed form:

^w1
n21H~w1!&5^uw1un21H1~w1!&1

2^uw1un21H2~w1!&2, ~4.5!

where a plus sign followingH denotes that it is defined a
w1.0, and the same sign after the bracket means the a
age over the positive component ofw1, while a minus sign
stands for the same kind of notation.

~ii ! For oddn we have

^w1
n21H~w1!&5^uw1un21H1~w1!&1

1^uw1un21H2~w1!&2. ~4.6!

In order that the left- and right-hand sides of Eq.~4.3!
agree with each other, Eq.~4.5! must be of large magnitude
with negative sign, while Eq.~4.6! must be of small magni-
tude with positive sign. Hence we are led to

^uw1un21H2~w1!&2.0, ~4.7!

^uw1un21H1~w1!&1,0, ~4.8!

and

z^uw1un21H2~w1!&2z. z^uw1un21H1~w1!&1z. ~4.9!

Based on the inequalities~4.7!–~4.9! we draw the following
conclusions: from Eq.~4.7!

H2~w1!.0→A2~w1!.B2~w1! for w1,0
~4.10!

and from Eq.~4.8!

H1~w1!,0→B1~w1!.A1~w1! for w1.0.
~4.11!

The inequalities~4.10! and ~4.11! agree with the numeri-
cally calculated value ofH(w1) from the DNS data as de
6-8
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picted in Fig. 7~a!, where a normalized quantityh(w1)
5A^w2

1&H(w1)/n^u¹xw1u2& is displayed. The inequality
~4.9!, on the other hand, suggests thatH2(w1) is more sig-
nificant thanH1(w1).

If we write A1(w1), A2(w1), B1(w1), B2(w1) in the
order of the degree of importance

A2.B1 , B2.A1 , ~4.12!

where we cannot orderB1 and B2 . Equation~4.12! indi-
cates thatA2(w1) is the most essential in driving fluctua
tions toward smaller scales in three-dimensional turbulen
while A1(w1) is the least important. Both pressure term
B2(w1) and B1(w1) play an intermediate role betwee
A2(w1) andA1(w1). Such a property in the pressure term
consistent with the conclusion in the preceding section
the pressure term is the average of the negative and pos
convection terms.

Turn to the calculation of the energy transfer rate inr
space due to the inertial term~convective plus pressur
terms!. The transfer rate is expressed as

w1H~w1!. ~4.13!

As can be seen from Fig. 7~a!, H(w1).0 for w1,0 and
H(w1),0 for w1.0, so thatw1H(w1) is negative in the
entire region ofw1 irrespective of its sign. The energy ca
cades toward smaller scale for anyw1. Of interest is the

FIG. 7. Plot of h(w1) against w1 /A^w1
2&.

h(w1) is related to H(w1) via h(w1)5A^w1
2&H(w1)/

n^u¹xw1u2& . ~a! In the wide range ofw1 and~b! in the vicinity of
w150.
02631
e,
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behavior ofH(w1) in the vicinity of w150. Figure 7~b! is
the closeup ofH(w1); all the curves corresponding to th
inertial range scale do not cross the origin. Although cross
points depend on the scale, they are roughlyw1 /A^w1

2&
'0.1. This means that the inverse cascade of energy ta
place in the interval 0<w1 /A^w1

2&<0.1. The reason for it is
not known to us at present.

Finally note thatH(w1) is related to the conditional aver
age of the Laplacian ofw1. If one takes the conditional av
erage of Eq.~2.5! in the universal region, one has

K wj

]

]r j
w11

]

]X1
dpuw1L 5n^¹2xw1uw1&. ~4.14!

Hence

H~w1!5n^¹2xw1uw1&. ~4.15!

This definition of the conditional average was introduc
elsewhere@28#.

V. RELATIONSHIP BETWEEN INERTIAL TERM AND
DISSIPATION RATE

In this section we will investigate what role the dissip
tion rate, i.e., the right-hand side of Eq.~2.21!, plays against
the inertial term. To this end, we computed

Cn~r !52
2n~n21!^«1~x1,x2!w1

n22&

^w1
n11&/r

~5.1!

for various integers ofn againstr using the data of DNS, as
depicted in Fig. 8, where the inserted solid line with arro
at endsr /h580 and 200 stands for the inertial region. W
summarize the essential points drawn from Fig. 8.~i! For n
>4 Cn(r ) takes constant valueCn* independent ofr in the
inertial region.@C5(r ) depends slightly onr, but it is re-
garded as independent ofr.# It is certain thatC3(r ) is not
constant in the inertial region.~ii ! For even integers ofn Cn*
seem to approach a constant valueA from above asC4*
.C6* .C8* asn increases.~iii ! For oddn Cn* increases with
n. At the level of present resolution we could compute on

FIG. 8. Plot ofCn(r ) againstr /h. The region between the two
arrows is the inertial region.
6-9
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NAKANO, GOTOH, AND FUKAYAMA PHYSICAL REVIEW E 67, 026316 ~2003!
up to C7. It is clear thatC7* .C5* . At this moment it is not
confirmed thatCn* asymptotically approachesA for oddn. It
is probable thatCn with oddn converges to a different value

We conclude thatCn(r ) approach constant values fo
large n in the inertial region. What does this mean? To a
swer to it, let us focus on Eq.~2.21!, which is valid in the
inertial range. As shown in Appendix A the pressure gradi
term behaves in a similar way to the convection term, so
one can express the inertial term as

]

]r j
^wjw1

n&1nK w1
n21 ]

]X1
dpL 5D~n!

]

]r j
^wjw1

n&.

~5.2!

Hence Eq.~2.21! reduces to

D~n!
]

]r j
^wjw1

n&522n~n21! ^w1
n22«1~x1,x2!&,

~5.3!

where the following relation has been used:

K w1
n21 wj

]

]r j
w1L 5

1

n K wj

]

]r j
w1

nL 5
1

n

]

]r j
^wjw1

n&.

For largen the approximation

]

]r j
^wjw1

n&'
]

]r
^w1

n11&5
zn11

r
^w1

n11& ~5.4!

holds in the inertial region, wherezn11 is the scaling expo-
nent of the structure function of̂w1

n11&. Substituting Eq.
~5.4! into Eq. ~5.3! and combining the result with Eq.~5.1!,
we have

Cn~r !5zn11D~n!. ~5.5!

Substitutingzn}n @29# yields

D~n!5OS 1

nD . ~5.6!

Equation~5.6! indicates that the pressure screens the conv
tion term considerably, but not in a perfect way.

Another interesting point found in Fig. 8 is the observ
tion that C3(r ) is not constant even in the inertial regio
Puttingn equal to 3 in Eq.~2.21!, we have

1

3

]

]r j
^wjw1

3&1 K w1
2 ]

]X1
dpL 524^«1~x1,x2!w1&.

~5.7!

A plot of ^e1(x1,x2)w1&r /^w1
4& in Fig. 8 indicates that it

decreases withr. It means that the dissipation term is irre
evant in the inertial region. Namely,

1

3

]

]r j
^wjw1

3&1 K w1
2 ]

]X1
dpL 50 ~5.8!

holds in the inertial region. If Eq.~5.8! is rewritten,
02631
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K w1
2S ]

]r j
wjw11

]

]X1
dpD L 50.

At the level of fourth order the pressure almost screens
convection term

]

]r j
wjw11

]

]X1
dp'0, ~5.9!

and the effect of fluctuating dissipation rate does not co
in. At order of three it is well known that the structure fun
tion is not affected by the fluctuating dissipation rate. F
highern the scaling exponents are affected by it. At pres
we do not reason why the fourth order structure function
not affected by the intermittency effect of the dissipati
field.

VI. ROLE OF DISSIPATIVE STRUCTURE

In the preceding section we showed that the dissipa
structure plays a crucial role in the structure functions
order higher than five. On the other hand, as far as the fo
order structure function is concerned, the dissipation term
shown to be irrelevant. In this context it is of interest
investigate the correlation of dissipation rate«1(x1 ,x2) with
@w1(X,r )#n, i.e.,

I n[^w1
n«1&. ~6.1!

Other interesting quantities are introduced by extendingn
into noninteger. For that purpose one can imagine two ty
of correlation

Jn[^uw1un«1& ~6.2!

and

Kn[^sgn~w1!uw1un«1&, ~6.3!

where sgn(x)51 when x.0 and 21 when x,0. In the
following we deal only withI n andJn in detail.

FIG. 9. Plot of I n againstr /h. The curves atr /h5200 are
I 1 , I 3 , I 2 , I 5 , I 4 , I 6 , I 7 , I 8 , I 9, andI 10 upward from the bottom.
6-10
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A. I n

In this subsection we will show how«1(x1 ,x2) is corre-
lated to@w1(X,r )#n. Figure 9 is a plot ofI n againstr /h for
n from 1 to 10 based on the DNS. The inertial range
located in betweenr /h580 and 200. The results are sum
marized as follows.~i! For n>2 I n scales withr in a power
law in the inertial region, although the slope is less than
K41 valuen/3, reflecting the intermittency effects. It is we
balanced with the left-hand side of Eq.~2.21! as discussed in
Sec. V.~ii ! Perplexing is the casen51. I 1 decreases withr,
on the contrary to the expectationI 1;r 1/3. This tendency is
confirmed for many simulations with Reynolds numbers l
than 380 together with Jet data ofRl5380 @30#, although
those results are not shown here.~iii ! In Fig. 9 we notice that
the slope ofI 6 is very close to that ofI 7. A similar tendency
holds betweenI 8 and I 9. To illuminate such a tendency, w
compareI 2n11 /I 2n with I 2n12 /I 2n11. The comparison is de
picted in Fig. 10, which indicates that the former is almo
independent ofr in the inertial region, while the latter is a
increasing function ofr.

The property~iii ! is understandable.I n can be expresse
in terms of the conditional average of«1 as

I n5E ^«1uw1&w1
nP~w1!dw1 . ~6.4!

Since^«1uw1&'G(w1) in the inertial region,I n is equal to

I n5E w1
nG~w1!P~w1!dw1 . ~6.5!

SinceG(w1)P(w1) is negatively skewed for large amplitud
of w1 as seen in Fig. 6, it is very probable that the rese
blance ofI 2n11 to I 2n is stronger than that ofI 2n11 to I 2n12.
This property combined with Eq.~5.3! suggests that̂w1

2m& is
closer to^w1

2m21& than to^w1
2m11&, in accordance with the

observation by Stolovitzky, Sreenivasan, and Juneja@22#; see
also Ref.@31#.

B. Jn

Turn to the correlation of the longitudinal dissipation ra
«1 with the absolute value of the velocity increment. Figu

FIG. 10. Comparison ofI 2n11 /I 2n to I 2n12 /I 2n11.
02631
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11 is a plot ofJn againstr /h for n from 1 to 10. We can see
that Jn scales in a logarithmically ordered way withn in
contrast toI n .

What is the significance of the this result? Equation~2.12!
leads us to

^uw1un21H~w1!&12^uw1un21H~w1!&2

52n~n21!^uw1un22u¹xw1u2&, ~6.6!

which was derived in Appendix B. The right-hand side of E
~6.6! is nothing but Eq.~6.2! in the inertial region. According
to the arguments in Sec. IVH(w1) is positive forw1,0 and
negative forw1.0, so that both terms on the left-hand sid
of Eq. ~6.6! are negative, bringing about no cancellation. O
can approximate the left-hand side of Eq.~6.6! by

2aD~n!
^uw1un11&

r
, ~6.7!

in accordance with Eq.~5.2!. Here a is a certain numerica
constant independent ofn andD(n) is of order of 1/n. Then
Eq. ~6.6! becomes

aD~n!
]

]r
^uw1un11&52n~n21!Jn22 . ~6.8!

FIG. 11. Plot ofJn againstr /h. The curves representJ1 to J10 at
r /h5200 from bottom to top.

FIG. 12. Plot ofC̃n(r ) againstr /h.
6-11
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Equation ~6.8! states thatJn22 is related to the (n11)th
order structure function of the absolute value of the veloc
difference.

Now we are ready to show that the expression~6.8! is
correct by plotting

C̃n~r !5
2n~n21!Jn22

^uw1un11&/r
~6.9!

againstr /h in Fig. 12, whereC̃n(r ) takes a constant valu
for any n. It seems that it approaches an asymptotic va
systematically in the inertial region. Therefore the scal
exponents of the structure function of the absolute value
the longitudinal velocity difference orderly increases withn
in accordance with the previous result in Ref.@8#.

VII. COMPARISON WITH MEAN FIELD THEORY

In this section we wish to discuss the obtained results
comparison with the mean field approximation@12,13#. It
may be useful to summarize the theory by Yakhot@12#. The
equation for the structure function contains the convect
term, the pressure term, and the dissipation term. If the p
sure and dissipation terms are expressed in terms of
structure functions of other orders through the introduct
of the conditional averages, the equation is closed, so
structure functions of different orders are related to e
other, from which the scaling exponents will be derived.
started with the equation without the pressure and dissipa
terms, and then, include those effects in a perturbative w
This approximation was expected to be valid at the dim
sion d close todc , which is the critical dimension which
distinguishes the three-dimensional turbulence from the t
dimensional one. Whetherd53 is enough close todc must
be determined by the comparison with experiment and D

Kurien and Sreenivasan@13# investigated the validity of
those approximations based on the data in boundary l
turbulence withRl510 700. Their strategy is to evaluate th
contribution of the pressure term, which cannot be measu
in experiment, by analyzing the equation for structure fu
tion of even orders where the effect of the dissipation term
considered to be small. They began with Eq.~2.21! with odd
n, where the dissipation term is ignored:

K w1
2nS wj

]

]r j
w11

]

]X1
dpD L 50. ~7.1!

Substituting the measured contribution of the convect
term into Eq.~7.1! enabled them to estimate the contributi
of the pressure term as 10% of the component of the c
vection term such aŝw1

2n11]w1/]r &. Then they turned to
the equation for the structure function of odd order; plugg
evenn into Eq. ~2.21! yields

K w1
2n11S wj

]

]r j
w11

]

]X1
dpD L

522~2n11!^w1
2n«1~x1,x2!&. ~7.2!
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Substituting a model expression for the pressure, which
constructed using the result for the even order structure fu
tion, they evaluated the left-hand side of Eq.~7.2!, which
must be balanced with the right-hand side. The result is
the dissipation term dominates the pressure term; the d
pation term balances about 85 to 90% of the convect
term.

In the present paper we investigated the full equation.
did not decompose the convection term in Eq.~7.1! into the
sum of ^w1

2n12& and ^w1
2nw2

2& because the longitudinal con
vection termwk(]/]r k)w1 is dealt with as a whole in the
form of A(w1). Hence we cannot comment on how large t
pressure term is as compared with the decomposed con
tion terms.

Some conclusions obtained in the present paper can
compared with the mean field approximation. At the level
fourth order, the effect of the dissipation term turns out to
negligible in the inertial region, which agrees with the a
sumption employed in the mean field approximation. In t
equations for the structure functions of even order hig
than 6, however, the dissipation term cannot be negligib
which balances the inertial term~convective plus pressur
terms! in a scaling sense.

Finally we want to add the following remark. Mean fie
theory @12,13# assumed thatI n is small for oddn in the
inertial region. According to Fig. 9 this assumption does n
look so good, sinceI n with oddn is only a little smaller than
I n with evenn. The comparison ofI n with the inertial term,
as done in Fig. 8, however, indicates that the contribut
from oddn is smaller by a factor 10 than that from evenn in
agreement with the assumption in mean field theory.

VIII. DISCUSSION

In this section we will argue the origin of the anomalo
scaling in three-dimensional turbulence based on the res
obtained in this paper. Since we have shown elsewhere@8#
that the scaling exponents of the longitudinal structure fu
tions computed from our DNS data are agreement with
currently accepted values, the detailed discussion of the s
ing exponents is not given here.

Instead the following issues are discussed. What is
cause of the anomalous scaling? Is the dissipative struc
responsible for it? Does the homogeneous integrodifferen
equation without the dissipative term, i.e.,

K w1
n21wj

]

]r j
w1L 2E dRK1 j~R!^w1

n21~X,r !

3wk~X1R,r !
]

]r k
wj~X1R,r !&50, ~8.1!

yield a solution with the lower scaling exponents for t
structure functions? What is a role of the pressure term
structure functions?

The study ofCn(r ) in Sec. V indicates that̂«1w1
n& scales

in the same way aŝw1
n13&/r as long asn>2. This implies

that the dissipative structure is responsible for the anoma
scaling of the structure functions of order larger than 5. Sin
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the pressure term scales as the convection term as show
Appendix A, it contributes to the numerical coefficients
those structure functions, but not to their scalings. The
mogeneous equation~8.1! cannot yield a more intermitten
solution than the inhomogeneous solution.

The above discussion does not hold for the fourth or
structure function, which scales anomalously asr 1.30 @8#
compared withr 4/3 in K41. The equation for the fourth orde
structure function is confirmed not to be affected by the d
sipative term, and the homogeneous integrodifferential eq
tion must yields the anomalous scaling solution. It sugge
that the pressure term may be responsible for the anoma
scaling of fourth order.

Hence the following scenario is possbile. At any order
pressure term brings about the anomalous scaling. The d
pative term only adjusts to the inertial term, i.e., the summ
tion of the convective and pressure terms. At fourth or
such a balance is broken, but at larger orders the balan
satisfied.
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APPENDIX A: CONTRIBUTION OF THE PRESSURE
TERM IN EQ. „2.19…

Let us focus on the pressure term in Eq.~2.19!. Substitut-
ing Eq. ~2.10! into it, we have

K wi
n21 ]

]Xi
dpL 52E dRKi j ~R!Li j ~R,r !, ~A1!

where

Li j ~R,r !5^wi~X,r !n21Ej~X1R,r !&, ~A2!

whereEj is defined in Eq.~3.17!. In Eq. ~A1!

Ki j ~R!5
1

2pR3 Fd i j 23
RiRj

R2 G . ~A3!

In Eq. ~A1! the summation is taken only overj, not overi.
Since r is chosen alongx direction, the tensor form o
Li j (R,r ) is specified only byR. ThenLi j (R,r ) can be rep-
resented as

Li j ~R,r !5^wi~X,r !n21Ej~X,r !& f i j ~R/r !, ~A4!

where the summation is not taken overj. Then
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K wi
n21 ]

]Xi
dpL 52^wi~X,r !n21Ej~X,r !&

3E dRKi j ~R! f i j ~R/r !. ~A5!

Here the summation is taken overj. The first factor on the
right-hand side of Eq.~A5!

^wi~X,r !n21Ej~X,r !& ~A6!

is expected to follow the same scaling as the convection t
for j 5 i .

Now turn to the examination as to whether another sc
ing factor in r arises from the geometrical factor

E dRKi j ~R! f i j ~R/r !. ~A7!

First we consider the contribution to Eq.~A7! from near the
origin R50. Since f i j (0)51, f i j (R) can be Taylor ex-
panded as

f i j ~R/r !511Ci jkRk /r . ~A8!

When f i j 51, Eq. ~A7! becomes zero due to the angle int
gration ofR, so that only the second term in Eq.~A8! con-
tributes to Eq. ~A7!; the contribution fromR* 1dR.R
.R* increases withR* . Second consider the far region o
R. For R>r , f i j will decay, so that it is safely written as

f i j ~R/r !;S R

r D 2d

, ~A9!

where d is positive. This time the contribution fromR*
1dR.R.R* decreases withR* . The above consideration
indicates that the main contribution comes fromR;cr,
wherec is of order of unity, which implies that Eq.~A7! is a
numerical factor. Therefore the left-hand side of Eq.~A1!
scales in exactly the same way as the convection term.

APPENDIX B: DERIVATION OF EQ. „6.6…

Let us start with Eq.~2.12!,

]

]t
w1

n1
]

]Xj
Vjw1

n1nw1
n21

3S wj

]

]r j
w11

]

]X1
dpD2nw1

n21d f 1

5n¹X
2w1

n2n~n21!nw1
n22u¹Xw1u2, ~B1!

and the equation obtained through multiplying Eq.~B1! by
(21)n,
6-13
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]

]t
~2w1!n1

]

]Xj
Vj~2w1!n2n~2w1!n21

3S wj

]

]r j
w11

]

]X1
dpD1n~2w1!n21d f 1

5n¹X
2 ~2w1!n2n~n21!n~2w1!n22u¹Xw1u2.

~B2!

Let us take the sum of the integration of Eq.~B1! multiplied
by P(w1)dw1 from 0 to` and that of Eq.~B2! multiplied by
P(w1)dw1 from 2` to 0. The time derivative term become

]

]t
^uw1un&,

which vanishes because of the stationarity of turbulence.
convection term

]

]Xj
^Vj uw1un&
J

v,

02631
e

also vanishes because of the homogeneity of the system.
external forcing term can be neglected in the universal
gion. The viscous transport term

n¹X
2 ^uw1un&

becomes zero because of the homogeneity. Finally we h

E
0

`

w1
n21S wj

]

]r j
w11

]

]X1
dpD P~w1!dw1

2E
2`

0

~2w1!n21S wj

]

]r j
w11

]

]X1
dpD P~w1!dw1

52n~n21!^uw1un22u¹Xw1u2&. ~B3!

Rewriting Eq.~B3! with the use ofH(w1), we have

^w1
n21H~w1!&12^uw1un21H~w1!&2

52n~n21!^uw1un22u¹xw1u2&. ~B4!
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